(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, y) → cond(ge(x, s(y)), x, y)
cond(false, x, y) → 0
cond(true, x, y) → s(minus(x, s(y)))
ge(u, 0) → true
ge(0, s(v)) → false
ge(s(u), s(v)) → ge(u, v)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
ge(s(u), s(v)) →+ ge(u, v)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [u / s(u), v / s(v)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, y) → cond(ge(x, s(y)), x, y)
cond(false, x, y) → 0'
cond(true, x, y) → s(minus(x, s(y)))
ge(u, 0') → true
ge(0', s(v)) → false
ge(s(u), s(v)) → ge(u, v)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(x, y) → cond(ge(x, s(y)), x, y)
cond(false, x, y) → 0'
cond(true, x, y) → s(minus(x, s(y)))
ge(u, 0') → true
ge(0', s(v)) → false
ge(s(u), s(v)) → ge(u, v)
Types:
minus :: s:0' → s:0' → s:0'
cond :: false:true → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → false:true
s :: s:0' → s:0'
false :: false:true
0' :: s:0'
true :: false:true
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
gen_s:0'3_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
geThey will be analysed ascendingly in the following order:
ge < minus
(8) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
ge(
x,
s(
y)),
x,
y)
cond(
false,
x,
y) →
0'cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
Types:
minus :: s:0' → s:0' → s:0'
cond :: false:true → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → false:true
s :: s:0' → s:0'
false :: false:true
0' :: s:0'
true :: false:true
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
ge, minus
They will be analysed ascendingly in the following order:
ge < minus
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
ge(
gen_s:0'3_0(
n5_0),
gen_s:0'3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
ge(gen_s:0'3_0(0), gen_s:0'3_0(0)) →RΩ(1)
true
Induction Step:
ge(gen_s:0'3_0(+(n5_0, 1)), gen_s:0'3_0(+(n5_0, 1))) →RΩ(1)
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
ge(
x,
s(
y)),
x,
y)
cond(
false,
x,
y) →
0'cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
Types:
minus :: s:0' → s:0' → s:0'
cond :: false:true → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → false:true
s :: s:0' → s:0'
false :: false:true
0' :: s:0'
true :: false:true
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
minus
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(13) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
ge(
x,
s(
y)),
x,
y)
cond(
false,
x,
y) →
0'cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
Types:
minus :: s:0' → s:0' → s:0'
cond :: false:true → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → false:true
s :: s:0' → s:0'
false :: false:true
0' :: s:0'
true :: false:true
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
minus(
x,
y) →
cond(
ge(
x,
s(
y)),
x,
y)
cond(
false,
x,
y) →
0'cond(
true,
x,
y) →
s(
minus(
x,
s(
y)))
ge(
u,
0') →
truege(
0',
s(
v)) →
falsege(
s(
u),
s(
v)) →
ge(
u,
v)
Types:
minus :: s:0' → s:0' → s:0'
cond :: false:true → s:0' → s:0' → s:0'
ge :: s:0' → s:0' → false:true
s :: s:0' → s:0'
false :: false:true
0' :: s:0'
true :: false:true
hole_s:0'1_0 :: s:0'
hole_false:true2_0 :: false:true
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
ge(gen_s:0'3_0(n5_0), gen_s:0'3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)